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One-dimensional toy model of globular clusters
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We introduce a one-dimensional toy model of globular clusters. The model is a version of the well-known
gravitational sheets system, where we also take into account mass and energy loss by evaporation of stars at the
boundaries. Numerical integration by the “exact” event-driven dynamics is performed, for initial uniform
density and Gaussian random velocities. Two distinct quasistationary asymptotic regimes are attained, depend-
ing on the initial energy of the system. We guess the forms of the density and velocity profiles that fit
numerical data extremely well and allow us to perform an independent calculation of the self-consistent
gravitational potential. Some power laws for the asymptotic number of stars and for the collision times are

suggested.
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[. INTRODUCTION stant. King’s models have been shown to be in agreement

with the observed brightness surface profiles of globular
Globular clusters are gravitationally bound concentrationglusters[4]. Further developments of King's modg] con-
of large numbers of stars, spherically distributed in spaceSider the same functional fortruncated Gaussiarapplied
They orbit around a galaxy spending most of the time in thel© the gravitational energy, and hence, propose a general
galactic halo[1]. The most important elements governing form for the distribution functiorf(x,v). We will not con-
globular clusters structure are two-body relaxation and trunSider here these extensions. o , ,
cation due to tidal forces. Different dynamical models con- [N this paper we discuss a simplified one-dimensional
sidering these specific phenomena, have been investigatdjP0dy model that reproduces King's distribution. We let the
both analytically[1-4] and numerically{5-7]. For an ex- particles, all of equal masm, 'T“e_faCt thr::z)ugh the one-
tended discussion, s¢8] and references therein. dimensional gravitational potential=27Gn'|x|, whereG
Dynamical evolution causes stars to escape as an effect i _the gravitational constant. Bearing in mind the comparison
the gravitational interaction with the nearby galaxies. Thi ith globu!ar clust(_ers, we imitate thg effect. o f galactic tidal
: . - "MS0rces by introducing a finite cutoff in positions. Thus, the
evaporation process drives the cluster towards a configurgs,anoration of stars from the system is the only “dissipa-
tion with a high-density core and the velocity dispersion ofie effect we consider. This is enough to drive the system
stars in the bulk can increase without limit. Th.|s phenom-iq\wards an asymptoticonstationaryregime, that we analyze
enon is known agravothermal catastrophand its study iy detail, and that reveals striking similarity with King's
goes back to Antonoy9] and to Lynden-Bell and Wood model.
[10]. The main difference between the simplified one-
Referring to the pioneering work of Chandrasekfidrit  dimensional model considered here and a more realistic
is possible to calculate the perturbations induced by stellathree-dimensional one, is the lack of any singularity of the
encounters on star motion. This is done by means of a difpotential at the origin. The presence of a finite lower bound
fusion model, which leads to quantitative description offor the one-dimensiona{lD) potential makes less energy
changes of star velocities in terms of single encounters. Coravailable to support the evaporation process as the system
sidering weak encounters, i.e., solving the diffusion model ircools down. In the 3D case, an infinite amount of energy can

the Fokker-Planck approximation, Kingt] found the fol- indeed be extracted from the singular pair-wise gravitational
lowing expression for the velocity profile: interaction, which is the main origin of the gravothermal

catastrophe. This is the reason why the model we discuss
—p2 —v§ cannot reproduce the core collapse corresponding to the gra-
exp —— | —ex 5 for v=u,, vothermal catastrophe.

20 20 In the next section we present the model and the results
concerning velocity distribution and density profiles. Section

fo(v)=A

fo=0  for v>ve, (@ ji1'is devoted to the discussion of power laws for the number
where v, is a cutoff velocity of the starsg is the one- of particles in the cluster. Finally, in Sec. IV, we draw some
C .
dimensional velocity dispersion, arda normalization con- conclusions.
Il. ONE-DIMENSIONAL MODEL

*Email address: fanelli@nada.kth.se Let us consider a one-dimensional classical Newtonian

"Email address: Marco.Merafina@romal.infn.it self-gravitating system ofN particles with equal masm,
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wherex; is the position and; the velocity ofith star.G is

the universal gravitational constant. We choose in the fol-

lowing m=1 and 2rG=1. This system has recently been
the subject of intensive investigatiof2]. Particle accelera-
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tions are constant in between two collisions and are propor-
tional to the net difference of particles, respectively, on the
right and on the left. When a collision occurs, particles cross
each other, or, equivalently, collisions are elastic. This par-

ticle approach is known to correspond in the continuum limit
(N—) to the Vlasov-Poisson equations for the distribution
function f(x,v)

of of AYA (7f_0
TV e O

&)
92V
—2=4meJ f(x,v)dv,
dIX

whereV(x) is the self-consistent gravitational potential.
We add the following features to the model:
(i) Particles are confined in a box of sitg i.e., x;e
[—L/2,L/2].

FIG. 1. Plots ofN vs. time for increasing initial temperatures,
with N(0)=400. Temperature and time are expressed in arbitrary
units.

Gaussian identical independently distributed random vari-
ables, with the temperaturg, given by twice the average
kinetic energy.

In Fig. 1 we show the time evolution of the number of
particlesN(t) that remain inside the box up to tinteAfter
an abrupt decrease f(t), which strongly depends on the
initial condition, the system reaches a state where rare evapo-
rations are present, makimg(t) decrease much slower. Our
numerical experiments show that sucuasistationarystate

(i) The effect of tidal forces induced by the parent galaxyjives indefinitely, although we cannot exclude that, finally,
is imitated by requiring that each time a particle reaches thw(t) relaxes to an asymptotic value,s. As the best ap-
boundary of the box with a finite velocity, it drops out of the proximation for this value, we take the one the system
system, which therefore experiences a mass and energy logsaches in the longest computer runs.

(“evaporation”). This last feature implies that syste(®) is Given L, for large enoughl, the system approaches a
solved with absorbing boundary conditions. state characterized by a single cluster, which adapts itself to

The numerical implementation is based on an “event—the size of the box. In Fig. 2 we show the phase-space por-
L IMPIe . trait for a system in its late stage evolution, when the most
driven” scheme, first introduced in plasma physids3],

which is adapted to the present case as follows. The algoe_nergetic particles have dropped out from the box and the
rithm looks for the particles that collide the first aﬁd for the system has .relaxed 0 an asymptofiateay as the ones

. . . reported in Fig. 1. The particles are almost uniformly distrib-
‘t‘lme when_ the_ eve”nt OCCUIt,y - Then it computes the f'rSt. uted within a bounded region of the phase plane. Both this
evapo I’.atIOI’l time”te, ap and make.s .the system evolve untll fact, and the shape of the contour, suggest a possible connec-
the minimumt,;, between the collision and the evaporation

time is reached. Once the system experiences evaporati

tion with the so-called water-balyVB) distribution[11,14].
the total mass is reduced and the escaping particle stops in-

on,
teracting with the residual bulk. By rescaling the position
and the velocity of each particle, i.e., introducing a local
dissipation, we maintain the position of the center of mass
fixed and its velocity to zero. This means we simply translate
velocity and position of the remaining particles to keep the
system centered in position and momentum space. A particle
can escape from the system as a result of this rescaling: this
possibility is taken into account even if it has a low probabil-
ity.

Evaporation is a singular event, which, in fact, marks the
transition between two self-gravitating systems having a dif-
ferent number of particles and energy. We remark that the
integration scheme is “exact.” Timeelapsed from the ini-
tial configuration is obtained by summing all valuestgf, FIG. 2. Phase-space plot for a systemN\{0)= 1500 particles
up to the last event. after 30< 10P collisions. Here;T;=0.4, L=0.0015, andN,s=886.

In all numerical experiment\(0) particles are initially  The quantitiesx andv are expressed in arbitrary units. The full line
uniformly distributed in the box and the initial velocities are that contains all the points is the theoretical prediciigh
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This is astationary solution of the Vlasov-Poisson system 0.5
(3), fWB(x,v), which is constant in a simply connected do-
main Q) of the phase plane and strictly zero outside. 04 | o
Adopting the notation of Ref.11], we call, respectively,

Xs andv ¢ the maximum position and velocity of the WB. The 03|
potentialV(x) for such a distribution is then implicitly speci- 8
fied by the following integral equation: > 02 |

63/4 V(x)

X=— [€¥2—(e— )% YL (4) 01t

Nas 0
The maximal energy of the water-bagis such that, if we 05 00002 00004 00006  0.0008
express f(x,v) in terms of the energyu=uv?/2+V(x), X

f(x,v)=F(u)=0 if u>e. The energye is related toxg and

ve by ezvg/z, V(xs) =€ and the zero energy level is fixed FIG. 3. Gravitational potential calculated numerically using Eq.
by requiring thatV(0)=0. The density profileo"B(x) is (8) (squaresand analytically by solving the integral E¢) with
expressed as a function of the potential vs=0.88(full line). Only the region of positivex is drawn, in arbi-

trary units.
3NZ, . . .
WB(y) = —V)12 5 An alternative treatment of the asymptotic state is based
p"Bx)=—~(e= V)~ (5 , :
8e on King's formula(1). In this case, one does not try to re-

produce the full distribution function, but just its projections
Since the distribution functiof(x,v) is constant ovef), it along thex andv axis: p(x) = [fdv andf,(v)=/fdx. Fol-
follows immediately that lowing the standard derivation of the equilibrium isothermal
N distribution[15], we are led to introduce an analytical aizsa
pWEB(x) = f” ) f(x,v)dv=2cv " (), (6)  for the density profile

)

L L
wherev (x) represents the profile of the upper branch of the p(x)=A| cosh 2(Bx)— cosh‘z( BE) for |x|<§
WB contour, which we assumed to be symmetric, and

=3N2/(16y2€%?). Using Eq.(5), this implies ©)

L
=0 for |x|>=,
v (X)=+2(e—V). ) p(X) or |x|>>

To compute the velocity contour* (x), we need to know Where the normalization is fixed by ["'F ,p(x)dx=Nas.
V(x), which we do by solving Eqi4) by an adaptive recur- For the velocities, we take King's distribution, specified in
sive Newton-Cotes eight-panel rule with tolerance” 10 Ed. (1). Assumingp(x) as in Eq.(9) we can derive a close
This velocity contour is drawn in Fig. 2 and, as predicted,analytical expression for the potential. For a one-dimensional
valuev from the cluster phase plot; this is the only phenom- L2
enological input in this palculatior_l and _the agreement with V(X):f ly—x|p(y)dy. (10)
the data has to be considered quite satisfactory. -L/2

Moreover, we can compare the theoretically derived po- ) ) ) )
tential V(x) with the one computed directly from the Inserting Eq.(9) into Eqg. (10) and performing the integral,
asymptotic positions we get

2

L
2

+_

X

v a2 at
V(Xi):; |%i—Xj]. (8) V(x)=Vq Etan BE - cos BE

We need, of course, to perform a vertical shift to fix the zero

in the origin. The result of formuléd) is reported in Fig. 3 2 coshBXx)

together with the theoretically derived potential. The agree- +—2In T ' 11
cosh B )

ment is very good. We are thus led to conclude that our 5

asymptotic state is well described by a water bag. However,

this latter is a stationary solution of the self-gravitating 1DWith

system, while in our simulations we continue to observe

some particle evaporations even at very long times. This is

why we have called our asymptotic stapeasistationaryand Vo=
its description in terms of a water-bag distribution can only

2 BL L cosh 2 BL
be approximate. gtan 2] cos 2
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FIG. 4. Gravitational potential calculated numerically using Eq.  FIG. 6. Normalized histogram of velocities as derived from the
(8) (squaresand by a numerical fit that uses Ed.1) (full line), phase-space plot in Fig. 2. The solid line is the fit obtained using
whereB=731.2 is the only free parameter. Eqg. (1) with 0=0.87,0,=0.98. Velocityv is expressed in arbitrary

units.
V(x) is quadratic for smalk. To verify the reliability of our
guess we reanalyze the data previously discussed in connec- A further aspect that we have tested is the dependence of
tion with the water-bag distribution. In Fig. 4 we plot the the dynamics on the initial temperatuFg. Indeed, for small
potential calculated numerically from E(®) together with a  values ofT,, the system shows a pronounced collapse, which
one-parameter fit, using E¢L1). Again, the agreement with |eads to a massive central core, as it is clearly displayed in
the data is very good and apparently even superior to the onfie main plot of Fig. 8. This phase-space distribution signifi-
obtained using the WB picture. This is simply due to the factcantly differs from the one in Fig. 2 and cannot be repre-
that here we perform a one parameter fit, while, in the presented by a water bag. The histograms of positions and ve-
vious discussiony s was arbitrarily deduced from the phase- |ocities are computed and plotted in the right and left insets,
space analysis. As a cross check, we introduce if®dhe  respectively. Both the density and the velocity profiles are
coefficientB, determined from the fit of the potential. The very well reproduced by a numerical fit based on our &mnsa
resulting density profile is plotted in Fig. 5 and it agrees with(9) and on King’s distributior(1).
the normalized histogram of particles position. Finally, an |n conclusion, the ansa we have introduced shows a
histogram of the velocity is represented in Fig. 6. Thegood agreement with numerical data for all values gfwe
reverse-cup shape due to the cutoff of the tails is evidentave simulated, while the water-bag distribution fails to re-
The solid line in Fig. 6 is a numerical fit that uses the ex-produce the velocity and density profiles at very low initial
pression of Eq(1) with v, and o as free parameters. temperature. However, in the high-temperature range, the

As a side remark we observe that, coherently with theyater-bag treatment is superior, because it leads to an accu-
observed form of the potential, each particle oscillates almostate description of the full distributiof(x,v).
harmonically inside the box. This can be seen by looking at
the asymptotic orbit of a single particl&ig. 7). The slight
diffusion of the orbit is the signature of the interaction with lll. SCALING LAWS

the other particles, which induces a weak chaoticity. In this section we discuss some numerically found scaling

0.2 : : : laws that do not presently have a theoretical justification, but
0.4
0.15 |
é} 0.2
< 01
> 0
0.05 |
-0.2
0 I n I
-0.001 -0.0005 0 0.0005 0.001
X -0.4 ‘ ‘ ‘
_ _ N _ ~0.002  -0.001 0 0.001  0.002
FIG. 5. Normalized histogram of positions as derived from the X

phase-space plot in Fig. 2. The solid line is HS), with B
=731.2 as shown previously. Positionis expressed in arbitrary FIG. 7. Asymptotic orbit of a single particle fod(0)=600, L
units. =0.0035. Positions and velocities are expressed in arbitrary units.
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FIG. 8. Phase-space plot for a system\{D)=1500 particles FIG. 10. t,o vs N in log-log scale foN(0)=600, L =0.0035.

after 30<10° collisions. Here, To=0.02, L=0.0015, andN,s  Different symbols refer to different initial values of the temperature
=1167. Left inset: normalized histogram of positions. The solidT,. t ., is expressed in arbitrary units.

line is a fit that uses Eq9) whereB=6845.7. Right inset: normal-
ized histogram of velocities. The solid line is the fit obtained using
Eqg. (1) with 0=0.3, v.=1.9. All quantities are expressed in arbi-
trary units.

0.4, which is valid over more than two decades. In the
insert of Fig. 9, we plotr vs T.

We have also checked the dependencéNarf the colli-
that are an important signature of the presence of a finit§iON tiMetco, defined as an average of all the collision
box. times corresponding to each fixed value\bfi.e., in between

We follow the system until it reaches the asymptotic state!WO Successive evaporations. In Fig. 10, we plot the results

N¢oi being the number of collisions, we define the “averageOf different numerical experiments where we vary thr_e initial
collision time” 7=t/Ng temperatureT,. The dependence df,, on N is again a
coll - : — —
In the main plot of Fig. 9 we represeNt. as a function ~POWer law with exponerh=—2.5. Note thab~1/a, hence,
of 7. Each point refers to a different value of the initial '9- 9 can be thought of as a macroscopic averaged image of

temperatureTl, varying form 0.2 to 7, whileN.,, is main- the microscopic properties shown in Fig. 10.
tained constant for each realization. The initial temperature
controls the rate of evaporation at a very early stage of the
evolution. Larger values of,, produce higher mass loss,
inducing the system to relax to a quasistationary state char- We have introduced a one-dimensional toy model of
acterized by less residual particlés,s (see Fig. 1L This  globular clusters with an emphasis on the evaporation pro-
process has consequences at the dynamical level, determigess. With this in mind, we have discussed the effect of
ing a larger mean-free-path, and consequently, a larger valustroducing a finite size box in a classical one-dimensional
of 7. The curve in Fig. 9 is consistent with this qualitative self-gravitating medium. The dynamics of the system has
picture, showing a power-law decay with exponeats  been investigated for a special class of initial conditions. We
pointed out the appearance of two distinct, nonstationary,
1000 ‘ ‘ ‘ asymptotic regimes that occur depending on the temperature
‘ of the initial realization. For small values @%,, similarities
with the isothermal solution are found, while for larger tem-
peratures, the density and velocity profiles are well repro-
duced, also assuming a water-bag distribution.

We propose a form of the density profile, with a cutoff in
the tails, which fits well with numerical data in all the ex-
plored regimes, allowing us to derive a close analytical ex-
pression of the gravitational potential. Moreover, a King-like
velocity profile is shown to be in good agreement with the
numerical data. The asymptotic truncated profiles are thus a
direct consequence of the evaporation from the finite box.

Finally, we have also given numerical evidence of some
scaling laws, which remain to be theoretically explained, but

FIG. 9. N, vs 7 in log-log scale. Herer is defined as the ratio  that are strongly related to the escaping process.
t/Neoy . Each point refers to a differef, while Ngo, is fixed. The In the future, we plan to extend this study to the system of
solid line represents a power-law fit with the slape —0.4. Inthe ~ concentric spherical mass shdl® by introducing an exter-
upper right corner inset vs T, is represented in a log-log scale. nal absorbing boundary in the configuration space, as done
The quantitiesT, and 7 are expressed in arbitrary units. here.

IV. CONCLUSIONS
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